Rheological behavior of dense assemblies of granular materials

Sankaran Sundaresan

Department of Chemical Engineering
Princeton University

Gabriel Tardos

Department of Chemical Engineering
The City College of the City University of New York

Shankar Subramaniam

Department of Mechanical Engineering Iowa State University

Project Manager: Ronald Breault

Pittsburgh
June 10th, 2008

Project objectives

- Develop validated continuum models for frictional flow of granular materials in the quasi-static and intermediate regime, including regime transitions from
 - A. Quasi-static to intermediate
 - B. intermediate to inertial
- Develop closure models in terms of particle properties

Synopsis of first year activity

 Simulated shear flow in periodic domains with constant volume or constant normal stress conditions using discrete element method (DEM); assessed the available hypoplastic models (Princeton)

 Developed instruments and collected in-situ data from stress sensors on a shearing surface in Jenike cell and axial-flow Couette devices. (CCNY)

 Simulated shear flow in wall-bounded domains with constant volume or constant normal stress conditions (ISU)

Simulation methodology

Discrete element method

linear spring-dashpot model with spring stiffness k

- inter-particle friction coefficient $\mu = 0.1$
- restitution coefficient e = 0.7

- 3D zero-gravity system using periodic domain
- with Lees-Edwards boundary condition
- Cohesion force modeled as van der Waals force*

$$F_{vdW} \approx \frac{Ad^6}{6s^2(s+2d)^2(s+d)^3} \xrightarrow{s << d} \frac{Ad}{24s^2}$$

$$s_{\min} = 4 \times 10^{-5} d$$

 $s_{\max} = 0.25 d$

Steady shear simulations

Computational system

- number of particles N = 2000
- system volume V constant for constant volume simulation
- scaled stiffness $k^* = k/\rho d^3 \dot{\gamma}^2$
- cohesion strength $Bo^* = F_{
 m vdW}^{
 m max}/kd pprox A/24ks_{
 m min}^2$

Continuum fields

- solid volume fraction ϕ
- scaled stress $\sigma_{ij}d/k$
- apparent friction coefficient μ_{app}

 $\sigma_{zz}d/k$ constant for constant normal stress

Flow regimes

Non-cohesive

High volume fraction quasistatic regime

Inertial regime

Flow regimes

Both the stress and shear rate are now scaled differently

Apparent friction coefficient

Simulation results with wall

Non-cohesive

$$k_{nom}^* = k / \rho d^3 \dot{\gamma}_{nom}^2$$

$$k_{core}^* = k / \rho d^3 \dot{\gamma}_{core}^2$$

Simulation results with wall

$$k_{nom}^* = k / \rho d^3 \dot{\gamma}_{nom}^2$$

$$k_{nom}^* = k / \rho d^3 \dot{\gamma}_{nom}^2$$
 Non-cohesive $k_{core}^* = k / \rho d^3 \dot{\gamma}_{core}^2$

Jenike Cell experimental setup

Detail

Activating Arm

Ring Cell

Stress Sensor

Jenike cell simulations

- Simulations set up as closely to the CCNY experiment as possible
- Stresses computed by dividing the sum of the contact forces acting on the wall by the area of wall or sensor
- Dynamic sensor mimics the experimental sensor; static sensors do not move relatively to the particles
- Case: external load 1psi; velocity 16 mm/sec

- Dynamic sensor move
- Static sensor stay

Stress on dynamic sensor

- Stress fluctuates significantly around one psi
- Fluctuating range agrees

Stress on static sensors

- Stress is spatially inhomogeneous; temporally steady after short time
- Fluctuation on dynamic sensor is largely due to spatial inhomogeneity and finite sensor size

Unsteady shear simulations

Stop-and-go shear

- System sheared to steady state at
- Shear stops for $\dot{\gamma}_0 t = 1$
- Shear resumes in the same direction or in reversed direction

$$K = \operatorname{Sign}(\dot{\gamma})k^*$$

Cohesion strength

• HC
$$Bo^* = 1.25 \times 10^{-4}$$

• MC
$$Bo^* = 2.5 \times 10^{-5}$$

• LC
$$Bo^* = 5 \times 10^{-7}$$

Normal stress evolution

- Independent of shear rate and cohesion strength
- Transition after shear reversal need strain of order unity to recover
 - Stress relaxation depends on how "deep" in the quasistatic regime

Characterize microstructure

Fabric tensor: average of outer product of particle contact normals

$$\mathsf{R} = \langle \mathbf{n}_{p,c} \mathbf{n}_{p,c} \rangle = rac{\phi}{N} \sum_{p=1}^{N} \sum_{c=1}^{c_p} \mathbf{n}_{p,c} \mathbf{n}_{p,c}$$

• R_{xx} magnitude indicates the microstructure anisotropy strength; sign indicates the anisotropy direction

Anisotropy evolution

- Microstructure evolves in a correlated way with stress
- Transition after reversal is gradual and requires comparable strain to reach steady state

Axial Flow Couette Apparatus

Allows closed-bed (Batch) and openbed (continuous) experiments

Flow regimes in a batch Couette

$$\mathcal{T}_{\text{ave}} = \frac{2T}{\pi L D^{-2}}$$

T - torque

L & D – dimensions of cylinder

- Shear stress is independent of shear rate
- Expansion is constrained by overburden in the no-flow system
- Transition to intermediate regime does not occur

Flow regimes in a continuous Couette

Continuous Couette

$$\mathcal{T}_{\text{ave}} = \frac{2T}{\pi L D^{-2}}$$

T – torque L & D – dimensions of cylinder

- Bed can dilate and solid concentration decreases
- At low shear rates: the quasi-static regime dominates
- Increasing the shear rate changes the regime of flow to intermediate

Summary

- DEM simulations of simple shear flows of dense granular materials reveal the different regimes and the appropriate 'cohesive scaling" for the stresses.
- The apparent coefficient of friction is a strong function of particle volume
- Jenike cell simulations and experiments show qualitative agreements.

Summary - contd

- A stress transition is found in unsteady shear flows following flow reversal and is correlated to the microstructure evolution.
- Boundary layer effects have been identified with the presence of walls, but much more characterization is needed.
- Preliminary experiments have been done using a continuous flow Couette cell, with more results to follow.

Future work

- Refine hypoplastic models-- incorporate fabric evolution (Princeton)
- Simulate unsteady shear in Couette cell (Princeton)
- Perform Couette flow experiments (CCNY)
- Compute order parameter from more DEM simulations (DEM)
- Quantify boundary layer effects and compare to predictions from continuum models (ISU)

Thank you!